Mood Extraction Using Facial Features to Improve Learning Curves of Students in E-Learning Systems
نویسنده
چکیده
Students’ interest and involvement during class lectures is imperative for grasping concepts and significantly improves academic performance of the students. Direct supervision of lectures by instructors is the main reason behind student attentiveness in class. Still, there is sufficient percentage of students who even under direct supervision tend to lose concentration. Considering the e-learning environment, this problem is aggravated due to absence of any human supervision. This calls for an approach to assess and identify lapses of attention by a student in an e-learning session. This study is carried out to improve student’s involvement in e-learning platforms by using their facial feature to extract mood patterns. Analyzing themoods based on emotional states of a student during an online lecture can provide interesting results which can be readily used to improvethe efficacy of content delivery in an e-learning platform. A survey is carried out among instructors involved in e-learning to identify most probable facial features that represent the facial expressions or mood patterns of a student. A neural network approach is used to train the system using facial feature sets to predict specific facial expressions. Moreover, a data association based algorithm specifically for extracting information on emotional states by correlating multiple sets of facial features is also proposed. This framework showed promising results in inciting student’s interest by varying the content being delivered.Different combinations of interrelated facial expressions for specific time frames were used to estimate mood patterns and subsequently level of involvement of a student in an e-learning environment.The results achieved during the course of research showed that mood patterns of a student provide a good correlation with his interest or involvement during online lectures and can be used to vary the content to improve students’ involvement in the e-learning system.More facial expressions and mood categories can be included to diversify the application of the proposed method. Keywords—Mood extraction; Facial features; Facial recognition; Online education; E-Learning; Attention state; Learning styles
منابع مشابه
Body Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine
Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...
متن کاملThe Evaluation of a Blended E-learning Program for Nursing and Midwifery Students in Tehran University of Medical Sciences
Introduction: Blended-E-Learning system uses various methods and technologies to improve learning quality. We developed some courses based on Instructional System Design Processes (analysis, design, implementation, and evaluation) for blended-e-learning, then we evaluated the effectiveness of this system in Tehran University of medical Science. Methods: In this partnership-based action researc...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملThe Relationship between Information Literacy and Access to Facilities with Attitudes toward E-learning among students of Urmia University of Medical Sciences
Introduction: E-learning is considered as one of the most important elements of higher education in the information era. The present study aimed to investigate the relationship between information literacy and access to facilities with attitudes toward e-learning among students of Urmia University of Medical Sciences. Methods: This descriptive study was performed on 190 senior students of Urmi...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کامل